Entry of diphtheria toxin into cells: possible existence of cellular factor(s) for entry of diphtheria toxin into cells was studied in somatic cell hybrids and hybrid toxins
نویسندگان
چکیده
Ehrlich ascites tumor cells were found to be very insensitive to diphtheria toxin. We formed 37 hybrids from Ehrlich tumor cells and diphtheria toxin-sensitive human fibroblasts. The effects of diphtheria toxin on protein synthesis in those hybrids were examined. The hybrids were divided into three groups on the basis of toxin sensitivity. Group A hybrids were as sensitive to diphtheria toxin as human fibroblasts, Group C were as resistant as Ehrlich tumor cells, and Group B had intermediate sensitivity. Group A hybrids had diphtheria toxin-binding sites but Group B and C had no detectable binding sites. Elongation factor-2 of all the hybrids was susceptible to ADP-ribosylation by fragment A of diphtheria toxin. Cells of Group A and B became more sensitive to CRM 45 (cross-reacting material 45 of diphtheria toxin) after they were exposed to low pH (pH = 4.5). The resistance of Group C to CRM 45 was not affected by the same treatment. Group A and B hybrids and human fibroblasts had similar sensitivities to a hybrid toxin composed of wheat germ agglutinin and fragment A of diphtheria toxin, but Group C and Ehrlich tumor cells were resistant to this hybrid toxin. All the hybrids and Ehrlich tumor cells were more sensitive to a hybrid toxin composed of wheat germ agglutinin and subunit A of ricin than were human fibroblasts. On subcloning of Group B hybrids, one Group C hybrid was obtained, but no Group A hybrid. These facts suggest that Ehrlich ascites tumor cells differ from human fibroblasts in the expression of a factor(s) that is involved in entry of fragment A of diphtheria toxin into the cytoplasm after the toxin binds to its surface receptors.
منابع مشابه
Genetic analysis of the cell surface: association of human chromosome 5 with sensitivity to diphtheria toxin in mouse-human somatic cell hybrids.
Diphtheria toxin inhibits protein synthesis in eukaryotic cells by catalyzing inactivation of elongation factor 2. The 10,000-fold greater sensitivity in vitro to diphtheria toxin of human cells as compared to mouse cells seems to be attributable to a difference at the level of the cell membrane. Mouse-human cell hybrids are as sensitive to diphtheria toxin as human cells. We have shown that th...
متن کاملDesign and Production of Recombinant TAT Protein Structure, Catalytic Domain of Diphtheria Toxin, and Evaluation of Its Effect on Cell Line
Background and Objectives: Cancer is one of the most deadly diseases in the present age and its conventional therapies have had low success. Toxin therapy of cancer is a new therapeutic approach, which has attracted the attention of pharmaceutical specialists. Diphtheria toxin consists of three functional, transducing, and binding domains, that the functional part inhibits protein synthesis and...
متن کاملDiphtheria toxin entry into cells is facilitated by low pH
At neutral pH, NH4Cl and chloroquine protected cells against diphtheria toxin. A brief exposure of the cells to low pH (4.5-5.5) at 37 degrees completely abolished this protection. When, to cells preincubated with diphtheria toxin and NH4Cl, neutralizing amounts of anti-diphtheria toxin were added before the pH was lowered, the toxic effect was considerably reduced, but it was not completely ab...
متن کاملMechanism of Diphtheria Toxin Catalytic Domain Delivery to the Eukaryotic Cell Cytosol and the Cellular Factors that Directly Participate in the Process
Research on diphtheria and anthrax toxins over the past three decades has culminated in a detailed understanding of their structure function relationships (e.g., catalytic (C), transmembrane (T), and receptor binding (R) domains), as well as the identification of their eukaryotic cell surface receptor, an understanding of the molecular events leading to the receptor-mediated internalization of ...
متن کاملEntry of the Toxic Proteins Abrin, Modeccin, Ricin, and Diphtheria Toxin into Cells 11. EFFECT OF pH, METABOLIC INHIBITORS, AND IONOPHORES AND EVIDENCE FOR TOXIN PENETRATION FROM ENDOCYTOTIC VESICLES*
The toxicity of abrin, modeccin, and ricin to Vero cells was maximal at neutral and slightly alkaline pH, and it was strongly reduced at pH 6.0 and below. Diphtheria toxin was most toxic at low pH. Binding and endocytosis of abrin, modeccin, and ricin did not vary much within the pH range tested. High concentrations of the carboxylic ionophore Br-X-537A, protected against all four toxins. Combi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 98 شماره
صفحات -
تاریخ انتشار 1984